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complement prior studies that highlight the 
importance of short- and medium-lived pol-
lutants (14–17).

The top 10 pollutant-generating activities 
contributing to net RF (positive RF minus 
negative RF) in year 20 are shown in the bot-
tom chart, page 526), which takes into account 
the emission of multiple pollutants from each 
source activity (18). The seven sources that 
appear only on the left side (purple bars) 
would be overlooked by mitigation strategies 
focusing exclusively on long-lived pollutants.

The distinctly different sources of near-
term and long-term RF lend themselves to 
the aforementioned two-pronged mitigation 
approach. This decoupling is convenient for 
policy design and implementation; whereas 
the importance of long-term climate stabi-
lization is clear, the perceived urgency of 
near-term mitigation will evolve with our 
knowledge of the climate system. Addition-
ally, optimal near-term mitigation strategies 
will reflect decadal oscillations (19), seasonal 
and regional variations (20, 21), and evolv-
ing knowledge of aerosol-climate effects (22, 
23) and methane-atmosphere interactions 
(22)—considerations unique to the near term.

Thus, short- and medium-lived sources 
(black carbon, tropospheric ozone, and 
methane) must be regulated separately and 
dynamically. The long-term mitigation treaty 
should focus exclusively on steady reduction 
of long-lived pollutants. A separate treaty 
for short- and medium-lived sources should 
include standards that evolve based on peri-
odic recommendations of an independent 
international scientific panel. The framework 
of “best available control technology” (strict) 
and “lowest achievable emissions rate” 
(stricter) from the U.S. Clean Air Act (24) can 
be used as a model.

Such a two-pronged institutional frame-
work would reflect the evolving scientific 
understanding of near-term climate change, 
the scientific certainty around long-term cli-
mate change, and the opportunity to sepa-
rately adjust the pace of near-term and long-
term mitigation efforts.
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rable to total human CO
2
 emissions today). 

Another study predicts that, based solely on 
economic considerations, bioenergy could 
displace 59% of the world’s natural forest 
cover and release an additional 9 Gt of CO

2
 

per year to achieve a 50% “cut” in green-
house gases by 2050 (3). The reason: When 
bioenergy from any biomass is counted as 
carbon neutral, economics favor large-scale 
land conversion for bioenergy regardless of 
the actual net emissions (4).

The potential of  bioenergy to reduce 
greenhouse gas emissions inherently depends 
on the source of the biomass and its net land-
use effects. Replacing fossil fuels with bio-
energy does not by itself reduce carbon 
emissions, because the CO

2
 released by tail-

pipes and smokestacks is roughly the same 
per unit of energy regardless of the source 
(1, 5). Emissions from producing and/or 
refining biofuels also typically exceed those 
for petroleum (1, 6). Bioenergy therefore 
reduces greenhouse emissions only if the 
growth and harvesting of the biomass for 
energy captures carbon above and beyond 
what would be sequestered anyway and 
thereby offsets emissions from energy use. 
This additional carbon may result from 
land management changes that increase 
plant uptake or from the use of biomass 
that would otherwise decompose rapidly. 
Assessing such carbon gains requires the 
same accounting principles used to assign 
credits for other land-based carbon offsets.

For example, if unproductive land sup-
ports fast-growing grasses for bioenergy, 
or if forestry improvements increase tree 
growth rates, the additional carbon absorbed 
offsets emissions when burned for energy. 
Energy use of manure or crop and timber 
residues may also capture “additional” car-
bon. However, harvesting existing forests 
for electricity adds net carbon to the air. 
That remains true even if limited harvest 
rates leave the carbon stocks of regrowing 
forests unchanged, because those stocks 
would otherwise increase and contribute to 
the terrestrial carbon sink (1). If bioenergy 
crops displace forest or grassland, the car-
bon released from soils and vegetation, plus 
lost future sequestration, generates carbon 
debt, which counts against the carbon the 
crops absorb (7, 8).

The Intergovernmental Panel on Climate 
Change (IPCC) has long realized that bio-
energy’s greenhouse effects vary by source 
of biomass and land-use effects. It also rec-
ognizes that when forests or other plants are 
harvested for bioenergy, the resulting carbon 
release must be counted either as land-use 
emissions or energy emissions but not both. 

To avoid double-counting, the IPCC assigns 
the CO

2
 to the land-use accounts and exempts 

bioenergy emissions from energy accounts 
(5). Yet it warns, because “fossil fuel substitu-
tion is already ‘rewarded’” by this exemption, 
“to avoid underreporting . . . any changes in 
biomass stocks on lands . . . resulting from 
the production of biofuels would need to be 
included in the accounts” (9).

This symmetrical approach works for 
the reporting under the United Nations 
Framework Convention on Climate Change 
(UNFCCC) because virtually all countries 
report emissions from both land and energy 
use. For example, if forests are cleared in 
Southeast Asia to produce palm biodiesel 
burned in Europe, Europe can exclude the 
tailpipe emissions as Asia reports the large 
net carbon release as land-use emissions.

However, exempting emissions from bio-
energy use is improper for greenhouse gas reg-
ulations if land-use emissions are not included. 
The Kyoto Protocol caps the energy emis-
sions of developed countries. But the proto-
col applies no limits to land use or any other 
emissions from developing countries, and spe-
cial crediting rules for “forest management” 
allow developed countries to cancel out their 
own land-use emissions as well (1, 10). Thus, 
maintaining the exemption for CO

2
 emitted by 

bioenergy use under the protocol (11) wrongly 
treats bioenergy from all biomass sources as 
carbon neutral, even if the source involves 
clearing forests for electricity in Europe or 
converting them to biodiesel crops in Asia .

This accounting error has carried over into 
the European Union’s cap-and-trade law and 
the climate bill passed by the U.S. House of 
Representatives (1, 12, 13). Both regulate 
emissions from energy but not land use and 
then erroneously exempt CO

2
 emitted from 

bioenergy use. In theory, the accounting sys-
tem would work if caps covered all land-use 
emissions and sinks. However, this approach 
is both technically and politically challenging 
as it is extremely hard to measure all land-use 
emissions or to distinguish human and natu-
ral causes of many emissions (e.g., fires).

The straightforward solution is to fix the 
accounting of bioenergy. That means tracing 
the actual flows of carbon and counting emis-
sions from tailpipes and smokestacks whether 
from fossil energy or bioenergy. Instead of an 
assumption that all biomass offsets energy 
emissions, biomass should receive credit to the 
extent that its use results in additional carbon 
from enhanced plant growth or from the use 
of residues or biowastes. Under any crediting 
system, credits must reflect net changes in car-
bon stocks, emissions of non-CO

2
 greenhouse 

gases, and leakage emissions resulting from 

changes in land-use activities to replace crops 
or timber diverted to bioenergy (1).

Separately, Europe and the United States 
have established legal requirements for min-
imum use of biofuels, which assess green-
house gas  consequences based on life-cycle 
analyses that reflect some land-use effects 
(1, 14). Such assessments vary widely in 
comprehensiveness, but none considers bio-
fuels free from land-based emissions. Yet 
the carbon cap accounting ignores land-use 
emissions altogether, creating its own large, 
perverse incentives.

Bioenergy can provide much energy 
and help meet greenhouse caps, but correct 
accounting must provide the right incentives.
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